Boom 1980–1987

In the 1980s a form of AI program called "expert systems" was adopted by corporations around the world and knowledge became the focus of mainstream AI research. In those same years, the Japanese government aggressively funded AI with its fifth generation computer project. Another encouraging event in the early 1980s was the revival of connectionism in the work of John Hopfield and David Rumelhart. Once again, AI had achieved success. 


The rise of expert systems

An expert system is a program that answers questions or solves problems about a specific domain of knowledge, using logical rules that are derived from the knowledge of experts. The earliest examples were developed by Edward Feigenbaum and his students. Dendral, begun in 1965, identified compounds from spectrometer readings. MYCIN, developed in 1972, diagnosed infectious blood diseases. They demonstrated the feasibility of the approach. 


Expert systems restricted themselves to a small domain of specific knowledge (thus avoiding the commonsense knowledge problem) and their simple design made it relatively easy for programs to be built and then modified once they were in place. All in all, the programs proved to be useful: something that AI had not been able to achieve up to this point. 


In 1980, an expert system called XCON was completed at CMU for the Digital Equipment Corporation. It was an enormous success: it was saving the company 40 million dollars annually by 1986.


Corporations around the world began to develop and deploy expert systems and by 1985 they were spending over a billion dollars on AI, most of it to in-house AI departments. An industry grew up to support them, including hardware companies like Symbolics and Lisp Machines and software companies such as IntelliCorp and Aion. 


The knowledge revolution

The power of expert systems came from the expert knowledge they contained. They were part of a new direction in AI research that had been gaining ground throughout the 70s. "AI researchers were beginning to suspect—reluctantly, for it violated the scientific canon of parsimony—that intelligence might very well be based on the ability to use large amounts of diverse knowledge in different ways," writes Pamela McCorduck. "The great lesson from the 1970s was that intelligent behavior depended very much on dealing with knowledge, sometimes quite detailed knowledge, of a domain where a given task lay".


Knowledge based systems and knowledge engineering became a major focus of AI research in the 1980s. 


The 1980s also saw the birth of Cyc, the first attempt to attack the commonsense knowledge problem directly, by creating a massive database that would contain all the mundane facts that the average person knows. Douglas Lenat, who started and led the project, argued that there is no shortcut ― the only way for machines to know the meaning of human concepts is to teach them, one concept at a time, by hand. The project was not expected to be completed for many decades.


Chess playing programs HiTech and Deep Thought defeated chess masters in 1989. Both were developed by Carnegie Mellon University; Deep Thought development paved the way for Deep Blue.


The money returns: the Fifth Generation project

In 1981, the Japanese Ministry of International Trade and Industry set aside $850 million for the Fifth generation computer project. Their objectives were to write programs and build machines that could carry on conversations, translate languages, interpret pictures, and reason like human beings.


Much to the chagrin of scruffies, they chose Prolog as the primary computer language for the project.


Other countries responded with new programs of their own. The UK began the £350 million Alvey project. A consortium of American companies formed the Microelectronics and Computer Technology Corporation (or "MCC") to fund large scale projects in AI and information technology.


DARPA responded as well, founding the Strategic Computing Initiative and tripling its investment in AI between 1984 and 1988.


The revival of connectionism

In 1982, physicist John Hopfield was able to prove that a form of neural network (now called a "Hopfield net") could learn and process information in a completely new way. Around the same time, Geoffrey Hinton and David Rumelhart popularized a method for training neural networks called "backpropagation", also known as the reverse mode of automatic differentiation published by Seppo Linnainmaa (1970) and applied to neural networks by Paul Werbos. These two discoveries helped to revive the field of connectionism.


The new field was unified and inspired by the appearance of Parallel Distributed Processing in 1986—a two volume collection of papers edited by Rumelhart and psychologist James McClelland. Neural networks would become commercially successful in the 1990s, when they began to be used as the engines driving programs like optical character recognition and speech recognition.


Artificial neural network (ANN)
Main article: Artificial neural network

The development of metal–oxide–semiconductor (MOS) very-large-scale integration (VLSI), in the form of complementary MOS (CMOS) technology, enabled the development of practical artificial neural network (ANN) technology in the 1980s. A landmark publication in the field was the 1989 book Analog VLSI Implementation of Neural Systems by Carver A. Mead and Mohammed Ismail.

Comments

Popular posts from this blog

AI : Artificial Intelligence